EVONIK SOLUTIONS FOR BATTERY ELECTRIC VEHICLES

INNOVATE MOBILITY – WE PROVIDE THE CHEMISTRY.

Evonik is one of the world leaders in specialty chemicals. The company is active in more than 100 countries around the world. Evonik goes far beyond chemistry to create innovative, profitable and sustainable solutions for customers. More than 32,000 employees work together for a common purpose:

We want to improve life, day by day.

Evonik is embarking on the next phase of its strategic transformation.

The electric vehicle market has seen significant growth around the world, helping to further achieve carbon neutrality goals for a greener future. The shift from traditional petrol-powered combustion engines to hybrid and full EVs has placed lithium-ion batteries at the heart of modern e-mobility solutions.

Evonik's product portfolio for electric vehicle batteries includes a wide range of chemistries and high-performance materials. With raw materials, additives, process enablers and ready to use products, our products improve the performance of our customers' offerings across the entire electric vehicle battery value chain, anywhere it is needed: battery packs, battery cells and battery management systems and battery recycling. And with our next generation solutions, we make the electric vehicle batteries safer and long-living.

Learn more about how we support to boost EV batteries and our chemistry solutions for automotives, please visit: https://automotive.evonik.com/en

EVONIK GLOBAL LITHIUM-ION BATTERY CENTER (LIB-C)

Enhancing service and developing tailor-made solutions for the fast-developing EV battery industry

The Lithium-ion Battery Center (LIB-C) in Shanghai is Evonik's forefront of innovation in the EV battery industry, contributing significantly to the development of high-performance, safe, and sustainable battery solutions. By harnessing cutting-edge technology and fostering collaboration, the center is well-positioned to meet the evolving needs of the electric vehicle market and support the transition to cleaner transportation.

The competence center offers comprehensive support from the initial raw material stage to the production of a ready-to-use battery. Each process step is backed by robust analytics and incorporates next-generation technologies, delivering innovative materials and solutions.

Skilled technicians and highly qualified engineers providing customized solutions in a well-equipped laboratory.

OUR STATE-OF-THE-ART FACILITIES CAN CONDUCT EXPERIMENT OF KEY STEPS FOR THE BATTERY MAKING PROCESS

Electrode and cells

Separator coating

EVONIK MAKES THE ELECTRIC VEHICLE BATTERIES

SAFER AND LONG-LIVING

ANCAMIDE® and ANCAMINE® 2K epoxy curing agent

Provide excellent adhesive and mechanical property in EV battery structural adhesives and thermal conductive adhesives.

NOURYBOND® 382

Adhesion promoter of PVC plastisol for EV battery underbody coating, especially for low temperature or short time baking condition.

VESTALITE® S, the new curing agent

Allows using optimized epoxy SMC technology for structural lightweight applications.

KOSMOS® and DABCO® series

Organo-tin and bismuth metal catalysts can optimize material properties and curing behavior.

TEGOSTAB® and POLYCAT® SA Series

- Silicone surfactants and amine catalysts for PU froth foam.
- · Amine catalysts for potting and froth foam

ORTEGOL® Series

Dispersants and adhesion promotors for PU thermal conductive adhesive and others.

AEROSIL® fumed oxides

Provide excellent rheological and reinforcement properties in EV battery structural adhesives.

Dynasylan® organofunctional silanes

Provide excellent adhesion and crosslinking properties in structural adhesives and thermal conductive adhesives.

POLYVEST®

Liquid rubber used as highly reactive crosslinking binders or additives for 2K PU for gap filler or thermal conductive adhesive for EV-battery assembling.

VESTOPLAST®

APAO for hotmelt adhesive for cell structure bonding, welding point protection and electrode tab bonding etc.

TEGO® Therm

Thermal insulation granules and heat-stable silicone hybrid binder for fire-resistant coatings for EV battery housings & covers.

ALBIFLEX®

Flexibilizer for epoxy resins. Provides toughness, flexibility, fatigue performance and reduces crack formation and polymer degradation caused by thermo-oxidative stress.

Anode

• TEGO® Surten E series dispersant and flexing agent.

Cathode

- Cathode active materials dry coated with AEROXIDE® improve performance and life-time of Li-ion battery cells.
- \bullet TEGO $^{\circ}$ Surten E series dispersant and flexing agent.
- P84° solution binder and dispersant.

Separator

- Microporous membrane coated with AEROXIDE® to improve safety of Li-ion battery cells.
- TEGO® Surten E series wetting agent.

Gel polymer electrolyte

• Immobilized by functional AEROXIDE®.

AEROSIL® fumed oxides

Provide excellent rheological and reinforcement properties in EV battery structural adhesives.

AEROXIDE® fumed metal oxide

Functional additives for silicones, adhesives & sealants, and thermal insulation for EV battery pack assembly.

Dynasylan® organofunctional silanes

Provide excellent adhesion and crosslinking properties in structural adhesives and thermal conductive adhesives.

VESTAMID® PA12

The UL94 flame retardant polymer provides excellent high-voltage insulation properties for power busbar applications according to future safety requirements in EV.

VESTAMID® PA12 tubing systems

Contribute to an ideal thermal management of HV battery, e-motor, inverter and a well-tempered overall ambience of the car.

Polymer ST and TEGOPAC®

Silane modified polymers and reactive diluents for sealants, gap filler and potting applications.

Polymer VS and TEGOSIL®

Silicone raw materials and additives for thermal management for sealants, gap filler and potting applications.

VISCOBASE®

Dielectric thermal management fluids for improved battery lifetime, thermal efficiency and safe operation.

ALBIFLEX®

Flexibilizer for epoxy resins. Combines gap filler and structural adhesive.

 6

EVONIK PROVIDES VARIOUS SOLUTIONS FOR

ELECTRIC VEHICLE BATTERY INDUSTRY

Агеа		Products	Applications	Benefits	Page	
		Curing agent	Epoxy SMC based battery enclosure	Easy processing, lightweight design and low emissions	9	
Battery Pack		Epoxy curing agent	Epoxy 2k curing agent	Low viscosity, excellent adhesion and flexibility, fast curing speed		
		Adhesion promoter	PVC plastisol adhesion	Improving adhesion and baking under low temperature or short time, low odor, phthalates and arene free	10	
			АРАО	Hotmelt adhesive for cell structure bonding, welding point protection, electrode tab bonding etc	Excellent electrolyte resistance, high thermal stability, excellent adhesion and hot tack properties, good hydrolytic and UV stability, bonding to various substrates especially on PP without pretreatment	11
	Battery Box	Liquid rubber	2K PU for gap filler or thermal conductive adhesive for EV-battery assembling	Low viscosity, adjusted thixotropy, excellent chemical resistance to acids and bases, high water resistance, low moisture and oxygen permeability, good flexibility	11	
		Polyurethane catalysts	PU adhesives & sealants & foam	Help to tailor reaction profile for desired open-time and fast post-curing	12	
		Polyurethane surfactants	PU potting adhesive & froth foam	Optimize cell structure and foam stability	4.5	
		Polyurethane dispersants and adhesion promotors	PU adhesive and sealants	Optimize material properties	13	
		Granules and heat stable binder	Fire-resistant and thermal insulation coatings	Coatings with excellent insulation and fire- resistant properties	14	
		Silane adhesion promoter	EP, PU, SMP and other adhesives and sealants	Excellent adhesion and curing properties	15	
		Fumed silica	EP, PU, SMP and other adhesive technologies	Excellent rheological and reinforcement properties (on page 23)	15	
	Separator	Fumed metal oxides (Al ₂ O ₃)	Separator coating / incorporation	Improvement of thermal stability of separator	16-19	
		Low foaming, wetting agent	Ceramic slurry	Ceramic slurry surface tension reduction		
	Electrolyte	Fumed metal oxides (Al ₂ O ₃)	Gel / polymer electrolyte	Realize semi-solid electrolyte for safety improvement		
	Cathode	Fumed metal oxides (Al_2O_3, TiO_2)	Cathode Active Material (CAM) coating / doping	Protection of CAMs to enhance capacity retention / battery life		
Battery Cell		Dispersant	Cathode slurry	Slurry viscosity reduction and stability improvement		
		Flexing agent	Cathode	Increasing cathode electrode layer flexibility		
		Dispersant	Anode slurry	Slurry viscosity reduction and stability improvement		
		Flexing agent	Anode	Increasing anode electrode layer flexibility		
	Cathode / Separator	P84 PI as binder additive	Cathode additive / separator thermal stability	Increasing cathode adhesion strength / increase separator thermal stability		
	Power Management and Connectivity	PA12	Power busbars	For perfect electric insulation	20	
	Protection and Thermal Management	PA12	Cooling and heating line and connectors	Excellence performance together with production efficiency, lightweight and competitive system cost	21	
Battery Management System		Dielectric fluid	Immersive cooling	Efficient cooling performance that enables fast charging	22	
		Fumed silica and metal oxides	Silicones, adhesives & sealants for EV LIB pack assembly	Functional additives to improve processibility, increase thermal conductivity and electrical insulation, improve long-term stability, and anti-settling as well rheology and reinforcement	23	
		Silicone and filler treatment portfolio	Gap filler and thermal interface material	High flexibility of silicone formulation, improved thermal performance	24	
Battery Recycl	ing	H ₂ O ₂	Recycling of Ni, Co, Mn, Li	As the reducing agent to recover Li, Co, Ni, Mn in the leaching process	25	
Contact Us		•	<u>*</u>	•	26	

EPOXY SMC BASED BATTERY ENCLOSURE

VESTALITE° S curing agent is a high performance solution for sheet molding compound (SMC) material with low VOC when combined with a liquid epoxy resin.

Its unique properties make it suitable for automotive applications in large scale automated manufacturing (e.g. battery enclosure).

CONSORTIUM APPROACH

Joint development of Evonik's Joint Venture Vestaro and further partners including Forward Engineering, Lorenz, Lion Smart and Minth.

HARDWARE DEMONSTRATOR

Epoxy SMC based on VESTALITE® S enables easy processing as the material shows excellent mold flow combined with fast curing.

CONCEPT DEVELOPMENT

Multi-Material-Design to address all relevant functions and requirements of an integrated battery system.

More solutions available:

Structural adhesives for Electric & Electronics

Ancamine® cyclo-aliphatic amine and Ancamide® polyamide curing agents offer a wide product range to modify Tg, viscosity, latency, cure speed and toughness of 2K adhesives for ambient and heat cure applications for battery enclosures and structural applications in electric vehicles.

CONCEPT USPs & BENEFITS

Efficient material usage

- Complex geometric shape for part reduction and optimal system packaging
- Multi-material usage to address different requirements like fire resistance or EMC
- Best in class mechanical performance of EP-SMC and local reinforcement materials enables low battery weight

Functional integration

- Integration of module connection parts and further battery system relevant components (e.g. E / E-architecture)
- Integration of sealing and venting elements

Cost effective design and manufacturing

- Modularity of battery system sizes due to specific tooling concept and adjustable "Light Battery" module sizes
- Outstanding energy and power density at low costs

Crosslinkers

EPOXY CURING AGENT FOR

BATTERY ADHESIVES AND SEALANTS

ANCAMIDE° offers a range of polyamides and adducts to be used in EV battery adhesives with improved adhesion, lower viscosity and faster cure speed.

ANCAMINE° with modified aliphatic and cycloaliphatic curing agents provide various choices in EV battery adhesives, such as pot-life, viscosity, cure speed, and chemical resistance.

NOURYBOND° is the broadest range of high-performance adhesion promoters for automotive PVC and acrylic plastisols in the world. The Nourybond° polyamide-based and blocked isoyanate-based technologies provide solutions to the most demanding performance requirements.

.....

Epoxy 2K curing agent

Product	Viscosity	AHEW	PHR	Gel Time	Features
ANCAMIDE® 910	6,000	230	110-125	120 min	 Outstanding flexibility and peel strength Excellent thermal shock resistance Better adhesion to a wide variety of substrates
ANCAMINE® 2842	2,800	230	123	17 min	Lower viscosity and suitable for high filler content system Fast curing speed Excellent flexibility
ANCAMINE® 1922A	10	55	229	57 min	Produces exceptional toughness, resiliency Thermal shock resistance and outstanding impact resistance Good electrical properties
ANCAMINE® 2914UF	300-2,000	95	50	8 min (20 g mix)	Ultra-fast cure speed at room temperature Excellent mechanical properties Can be used as accelerator

Adhesion promoter in PVC plastisol

Product	Viscosity	Amine Value	Features	
NOURYBOND® 382	15,000-25,000 (40 °C)	280-330	Promoting PVC plastisol adhesion even u (130°C) or shorter baking time (15 min	3 1
Viscosity:	PHR:		Gel Time:	Amine Value:
Brookfield RVTD,	With bisphenol-A b	ased epoxy resin	Techne GT-3 gel timer,	Perchloric acid titration,
Spindle 4,	(EEW=190)		150 g mix at 25 °C	mg KOH/g
mPa.s at 25 °C			(unless indicated otherwise)	

Crosslinkers

APAO AND LIQUID RUBBER FOR

EV BATTERY ADHESIVES & SEALANTS

VESTOPLAST® and **POLYVEST®** products are widely used as binders/additives for adhesives and sealants in battery cell and pack, enhancing the performance of lithium-ion batteries.

Product	Application
VESTOPLAST® series	Raw material with superior electrode resistance for hotmelt adhesive for cell structure bonding, welding point protection, electrode tab bonding etc
POLYVEST® HT, POLYVEST® HT LV, POLYVEST® MA series, POLYVEST® MAT, POLYVEST® ST-E 60	2K PU for gap filler or thermal conductive adhesive for EV-battery assembling

VESTOPLAST® are characterized by the following product properties and show great performance in EV battery system applications.

- Excellent electrolyte resistance
- High thermal stability
- Excellent adhesion and hot tack properties
- Very good hydrolytic and UV stability
- Bonding to various substrates, especially on PP without pretreatment

Due to its microstructure POLYVEST® grades are highly reactive crosslinking binders or used as additives providing properties including:

- · Low viscosity
- Adjusted thixotropy
- · Excellent chemical resistance to acids and bases
- High water resistance
- Low moisture and oxygen permeability
- · Good flexibility

Coating & Adhesive Resins

POLYCAT® SA, KOSMOS® & DABCO® SERIES

FOR THERMAL CONDUCTIVE / **STRUCTURAL ADHESIVE**

.....

- Tailor curing profile for optimizing your process and formulation
- ▶ Enable a process transfer to automated production Improvement of aging stability

Recommended product series

Products	Description
POLYCAT® SA series	Thermolatent amine catalysts Suitable for aromatic system Balancing pot-life and through cure
KOSMOS°, DABCO° series	Delayed tin catalysts Suitable for aromatic and aliphatic system Balancing pot-life and through cure

Activation Temperatures of Thermolatent Amine Catalysts

80°C	
50-60°C	
40-50°C	
25°C	
	50-60°C 40-50°C

POLYCAT SA 8 POLYCAT SA 101/102 POLYCAT SA 1 /2 LE **POLYCAT SA 5**

ORTEGOL® DA SERIES FOR

THERMAL CONDUCTIVE / STRUCTURAL ADHESIVE

- ▶ Reduce system viscosity to optimize the process Recommended product series
- ▶ Enabling higher filler loading to meet the higher thermal conductivity targets
- ▶ Helps to maximize thermal conductivity

Products	Description
ORTEGOL® DA series	Suitable for formulations with >80% filler content Compatible in both, polyol and isocyanate

Conducive to efficient and uniform sizing No dispersant **ORTEGOL® DA 801**

Comfort & Insulation

DABCO®, KOSMOS® & TEGOSTAB® B SERIES FOR **POTTING FOAM**

- ▶ Enable optimal flowability for perfect filling distribution
- ▶ Ensure low foam temperature Improve adhesion to cells

Recommended product series

Product	Types	Description
DABCO® series	Catalyst	Delay amine catalyst for excellent system flowability
KOSMOS® series	Catalyst	Delay tin catalyst, excellent back-end cure performance
TEGOSTAB® B series	Surfactant	Ideal foam stabilization and flowability
Adhesion promoter	Performance additives	Specialty additives to improve the adhesion to the metal surface of the cylindrical cells

Efficient flowability to help fill individual slits in complex molds

TEGOSTAB® B, KOSMOS® & POLYCAT® SA SERIES FOR **FROTH FOAM**

- Ensure wet froth stability and fine cell retention in drying process
- Low VOC options
- Co-surfactant options for flexibility formulation
- Low toxicity catalyst with ideal processing
- Possibility to reduce density

Evonik solution can help to improve the finesse and uniformity

0.15 0.05 200.03 00.0 400.05 00.0

Recommended product series

Product	Types	Description
TEGOSTAB® B series	Surfactant	Silicone surfactants for foam stabilization and cell regulation
KOSMOS° series	Catalyst	Metal catalysts provide long operation time and good curing
POLYCAT® SA series	Catalyst	Amine catalysts provide thermo-activate behavior, improve processing latitude with long pot-life and fast curing

Comfort & Insulation

HEAT PROTECTION AND FIRE-RESISTANT COATINGS

THERMAL INSULATION GRANULES AND HEAT-STABLE SILICONE HYBRID BINDER FOR FIRE-RESISTANT COATINGS FOR EV BATTERY HOUSINGS & COVERS

The use of thermal insulation barriers in lithium-ion batteries is to mitigate the risk of fires resulting from infrequent but hazardous thermal runaway incidents in EV batteries. Fire-resistant coatings applied to battery covers represent one approach to reduce the risk of thermal runaway incidents. The TEGO® Therm product line facilitates tailor-made raw materials to formulate sprayable coatings that provide excellent fire resistance and thermal insulation characteristics. The combined use of microporous silica-based TEGO® Therm HPG granules and the heat-stable TEGO® Therm L300 binder allows to formulate flame-retardant coatings that meet the UL 94 V-0 fire safety standards.

Coatings formulated with TEGO® Therm effectively minimize heat transfer to the underlying substrate while preserving superior mechanical integrity during direct jetflame testing.

.....

Fire Resistance Test - 20 minutes exposure to a 1000 °C jetflame

Coatings based on **TEGO® Therm L 300** binder combined with **TEGO® Therm HPG** granules can reach a thermal conductivity (λ value) of less than 40 mW/(m K). Thin coatings with a dry film thickness (DFT) of only a few

millimeters, suitable for applications with limited space, enable effective insulation and protection of the substrate. Even with a flame temperature of >1000 °C, the temperature on the backside peaked at <250 °C.

TEGO® Therm portfolio - At a Glance

TEGO® Therm L 300

- Liquid waterborne polysiloxane hybrid binder with solid content ~50%
- · Superior heat stability
- Low smoke and odor development

TEGO® Therm HPG 4000

- Granules with superinsulation properties from passivated amorphous SiO₂ core
- High hydrophobicity
- Non-combustible / Non-flammable

TEGO® Therm HPG 6806

- Granules with excellent insulation properties from amorphous SiO₂ core
- Small particle size enable smooth coating surfaces
- · Excellent dimensional stability

DYNASYLAN® ORGANOFUNCTIONAL SILANES AS **ADHESION PROMOTERS**

Dynasylan® organofunctional silanes act as adhesion promoters in various EV battery adhesives and sealants. In addition, special Dynasylan® grades can help to adjust the filler loading and rheological properties.

Adhesion promoter in various polymer systems

Product	Characteristics	Application	
Dynasylan° 1124	Secondary aminosilane	High crosslinking potential for 2K PU, 2K EP, SMP and special primers	
Dynasylan° 1146 Oligomeric aminosilane		Suitable for 2K PU, 2K EP, SMP, imparting outstanding hydrophobicity and reduced VOC	
VPS° SIVO 260 Oligomeric aminosilane			
VPS° SIVO 280	Oligomeric aminosilane	Excellent adhesion on metal substrates and recommended for 2K PU, 2K EP, SMP	
VPS° 4721	Oligomeric epoxysilane	Suitable for PU, EP, and various other polymer systems	
VPS° 7163 Isocyanurate silane		High crosslinking potential for PU, EP and other polymer systems	
Dynasylan° 9116	Alkyl silane		
Dynasylan° 4148	Polyether silane	Capable to adjust the filler loading and rheological properties	

^{*} PU = polyurethane systems, EP = epoxy systems, SMP = silane modified polymer systems

Improve the filler loading and formulations workability by reducing the viscosity at higher shear rates

Enhance the primerless adhesion on aluminum and polycarbonate in STPU systems

Coating Additives Smart Effects

AEROXIDE® FUMED METAL OXIDES AS

PERFORMANCE ADDITIVES

AEROXIDE® fumed metal oxides are produced by flame hydrolysis (AEROSIL® process), the loose white powder consists of nano-structured aggregates. AEROXIDE® metal oxides are used as additives in Li-ion batteries to increase the performance, life-time and safety of the battery.

Product	Application
AEROXIDE° Alu 130, AEROXIDE° TiO₂ P 25	Protective dry coating for cathode active materials
AEROXIDE® Alu 45, AEROXIDE® Alu C 805 AERODISP® Ready to use dispersions	High performance LIB separator as coating or filler
VP AEROXIDE° Alu C 711	Functional additive in new electrolyte formulations

Dry coating for cathode active materials

AEROXIDE° is used for cathode material surface coating to stabilize cathode active material particles and to avoid cracks during charge/discharge, resulting in an increased capacity retention and enhanced battery life.

SEM: Al mapping of AEROXIDE® coated NMC particles

Cross section SEM imaging of cycled electrodes after 250 cycles

Ni-rich NMC, uncoated

Ni-rich NMC, AEROXIDE® coated

AEROXIDE® fumed metal oxides (Al_2O_3 and / or TiO_2) as **dry** coating on cathode particles leads to a significant increase in rate capability and capacity retention of LIB cells.

Powder mixture before dry coating process: Uncoated cathode powde +1 wt.-% AEROXIDE® Alu 130

Final product after dry coating process: 1 wt.-% AEROXIDE® Alu 130 coated on cathode powder

Preferred AEROXIDE® products:

- AEROXIDE® Alu 130
- AEROXIDE® TiO, P 25

Mixture of both

oxides is beneficial

Smart Effects

16

High performance LIB separator as coating or filler

AEROXIDE° fumed alumina enables the use of ultra-thin ($\leq 1 \mu m$), homogeneous ceramic coatings or is applied as ceramic filler inside the membrane, resulting in improvement of thermal stability of separator.

Evonik also offers AERODISP® – Ready to use alumina dispersions, tailor made for specific coating application and compatible with a variety of different binders.

Ceramic particles on top of the

AEROXIDE® AERODISP®

Ceramic particles throughout the whole interior of a polymer matrix

AEROXIDE®

Coating on separator

A thin ceramic coating made of AEROXIDE® fumed alumina protects the separator from thermal shrinkage and thus leads to an increased cell safety.

Ceramic filler inside separator

AEROXIDE® fumed alumina can also be used as ceramic filler inside separators, leading to excellent mechanical and thermal membrane properties combined with a high porosity.

Functional separator coating: Formation of gel polymer electrolyte

VP AEROXIDE® Alu C 711, a specially designed surface modified fumed alumina, is applied as thin ceramic coating on top of separators, to be triggered a cross-liking reaction with tetra (ethylene glycol) diacrylate (TTEGDA) additive in electrolyte to form electrolyte gelling. The formed gel polymer electrolyte with 3-dimensional network strongly enhances the contact between separator and electrodes.

Photographs show the open-circuit voltage of cells assembled with (a) pristine PE separator + liquid electrolyte and (b) VP AEROXIDE® Alu C 711 coated separator + gel polymer electrolyte, measured before and after thermal exposure at 200 °C for 1 h.

Detailed information available: https://doi.org/10.1016/j.jpowsour.2020.228519

17

Smart Effects

TEGO® SURTEN E AS PROCESS ENABLER FOR

LIB ELECTRODE AND SEPARATOR MANUFACTURING

TEGO® Surten E series are the process enablers which help contribute to further improvements in the production of LIB's which yield better electrical performance and lower overall costs. Evonik broad surfactant technology platform allow us to offer a wide range of products from wetting and dispersing agents to defoamers as well as flexing agents.

- NMP based dispersant for cathode
- · Water based dispersant for anode, separator
- · Evonik provides broad wetting technologies
- · Evonik provides all types of antifoam

.....

Product	Application
TEGO° Surten 400 E series dispersant	Cathode slurry, slurry viscosity reduction, uniform distribution of active materials Cathode slurry, viscosity reduction and uniform distribution of conductive materials
TEGO° Surten 800 E series flexing agent	Electrode, improve electrode layer flexibility and reduce electrode layer cracking
TEGO° Surten 200 E series low foaming, wetting agent	Separator, surface tension reduction for ceramic slurry

Applications and key benefits

Separator coating	Wetting agent to ensure uniform coating and adhesive promo	
Anode coating	de coating Dispersant for slurry viscosity and grinding time reduction and uniform coating	
Cathode coating	hode coating Dispersant for slurry viscosity reduction and uniform coating; flexing agent as anti-crack and swelling prevention	
Electrolyte fillers Liquid dispersant for next generation solid state electrolyte system		
Calendering	Defoamers to help avoid foaming and air-entrapment	

Interface & Performance

POLYIMIDE P84® AS ELECTRODES

BINDER / DISPERSANT BI-FUNCTIONAL ADDITIVES

The effective dispersion of the electrode active materials, and the adhision of the slurry and current collector are very important for the performance of lithium-ion-batteries.

Polyimide P84° can not only disperse the actively materials and conductive materials effectively, but also improve the bonding strength, providing dual effects.

.....

Average peeling strength of electrode with different additives

Sample	Ref-blank	P84
Peeling Strength (N/m)	5.73 ± 0.23	17.81 ± 1.60

The viscosity of LFP slurry with different dispersant

Shear rate (s ⁻¹)	Ref (mPa·s)	P84 (mPa·s)
0.1	16846	5595.9
1	15115	3845.9
10	5125.4	2465.2
100	2285.8	1899.5

The average peeling strength increase from 5.7 to 17.8 N/m by adding 3 wt% of polyimide P84 solution.

Polyimide P84 solution decreases the viscosity of electrode slurry by 66.8%.

High Performance Polymers

INSULATION FOR HIGH VOLTAGE POWER BUSBARS WITH **VESTAMID**® **POLYAMIDE 12**

Efficient management of electric power and permanently effective insulation of electrical components are key elements in e-mobility. The challenges include management of high voltage, high temperatures, and fire protection.

For more vehicle saftey, a high level of fire protection is expected of the plastics. Basically, the Evonik PA12 insulative materials provide outstanding and constant dielectric properties over the entire vehicle lifetime. This applies to power busbars in the high voltage bordnet, at HV charging and in particular, in high-voltage batteries. Powerbusbars are preferably insulated with polyamide 12 (PA12).

Evonik VESTAMID® PA12 is available at UL fire protection levels and includes halogen-free variants in the portfolio. The PA12 materials are in durable RAL signal color.

Evonik assists customers from setting up parameters for PA12 busbar co-extrusion to the bending of coated busbars and finishing of busbar components. In addition we support with specific polymer testing.

VESTAMID® for xEV power busbars

Properties	VESTAMID® PA12 compounds
Application voltage	High voltage up to 1000 V and more
Busbar metal core	Copper, aluminum, steel, (also tin / nickel plated)
Coating material	PA12, various grades available, grades UL94 certified
Coating thickness	0.5 – 1 mm
Coating process	Co-extrusion, injection overmould
Color	Orange RAL 2003, RAL 2004, RAL 2008, natural
Flame resistance acc. UL 94 (IEC 60695-11-10)	V0, V2, HB
Halogen-free	Yes
Temperature resistance	Up to +125 °C
Volume resistivity (IEC 62631-3-1)	10 ¹³ Ωm
Electric strength (acc. to IEC 60243-2, ISO 6722 / 19642)	AC > 25 kV / mm, DC > 40 kV / mm
CTI (IEC 60112)	600

PA12 co-extrusion forming and finishing polymer testing

High Performance Polymers

THERMAL MANAGEMENT WITH TUBING SYSTEMS FROM **VESTAMID**®

POLYAMIDE 12

During the high power charging cycles, or while driving (battery discharging), or even while being parked, the temperature of EV battery can exceed the given limit. With lines made from VESTAMID® we provide the suitable solution for both, **water glycol** or **refrigerant** used in the cooling cycles, to enable an effective thermal management and keep the temperature in your car battery at the desired level.

The performance of EV batteries, electric motors, and other high power components benefits from our specialized **mono- and multilayer tubing systems** by keeping its temperatures within the required limits.

For the different performance levels: VESTAMID® offers the right solutions for cooling lines

Evonik cooling line solutions based on VESTAMID®

High mechanical properties

The high mechanical properties of VESTAMID cooling line solutions enable them to replace rubber or metal by saving 30-50% weight. And thanks to the high burst pressure and cold impact resistance at -40°C it saves material, weight and space compared to other polymer solutions.

Creep resistance

With the high creep resistance even at higher temperatures cooling lines based on VESTAMID are assembled fast and easily with quick connectors for a long lasting and leakage free usage on vehicles. That saves material, storage-keeping and assembling costs for additional wedding ring, cramping or welding.

Chemical and stress cracking resistance

The VESTAMID cooling line solutions show excellent stress cracking resistance as requested in SAE J2260 § 7.12.1. This ensures the safety of the assembly over the whole lifetime of the vehicle under all environmental conditions. Not self-evident at all for other polymer solutions.

• Temperature resistance

VESTAMID cooling lines as mono layer or multilayer tubing (MLT 8000) can be used over the wide range of temperatures that occurs in cooling loops of vehicles for ICE or for xEV. Specially for BEV, having lower temperature resistance requirements, the MLT 8EV is a high performing solution at budget costs.

Sustainability

All grades of VESTAMID used for automotive applications are produced with renewable energy and reduce the carbon foot print by 30%, confirmed by Life Cycle Analysis. VESTAMID grades with further reduced carbon footprint like VESTAMID RFP or VESTAMID eCO are available, too.

OEM approved globally

Monolayer and multi-layer cooling lines with VESTAMID are approved at OEMs all over the globe and since decades in daily usage in millions of vehicles, whether powered by ICE or by battery.

High Performance Polymers

DIELECTRIC THERMAL MANAGEMENT FLUIDS FOR

Battery Management

EV APPLICATIONS

For the performance, durability and safe operation of a traction battery, it is essential to ensure operation in the optimal temperature range. This requires a powerful thermal management system, which can be achieved with submerging the battery cells in a dielectric fluid. Compared to air or water/qlycol cooling systems cooling with dielectric fluids offers numerous design advantages.

Product	Application
VISCOBASE® 11-416	Ultra-low viscosity synthetic hydrocarbon fluid that combines good heat capacity and thermal conductivity with very good material compatibility and superior low temperature flow performance
VISCOBASE® 11-150	Biodegradable low viscosity synthetic ester fluid that combines high heat capacity and thermal conductivity with low electrical conductivity and excellent low temperature performance.

AIR Insufficient

Density

Viscosity

Specific Heat

Thermal Conductivity

Electrical Conductivity

WATER / GLYCOL

Unit @ 40 °C

kg / I

 mm^2/s

kJ / (kg·K) $mW / (m \cdot K)$

nS / m @ 25 °C

VISCO

11-150

0.88

4.3

1.9

137

0.01

DIFLECTRIC FLUID

BASE°	VISCOBASE°
ASE	11-416
	0.78
	4.1
	1.9
	123
	0.20

Electrical efficiency for increased

- Faster charging
- · Prolonged battery life

Dielectric cooling allows

FUMED OXIDES FOR SILICONES, **ADHESIVES & SEALANTS IN EV LIB PACKS**

Products	Features	Requirements
AEROSIL® R 202 / R 208 / R 805	Structural adhesives (Battery Pack) Thickening thixotropy, and reinforcement	
AEROXIDE° Alu 65 / Alu 130 / Alu C VP Alu 45 / Alu 45 RK AEROXIDE° Alu C 805 AEROSIL° R 711	Thermal conductivity	Rheology control, anti-settling, homogeneity and stability improvement
AEROXIDE® TiO ₂ P 25 / PF2	Thermal stability	Silicone degradation at high temperatures, e.g. in silicone cables, sealants, and gaskets
AEROSIL° 200 / 300 / 380	Thermal insulation	Cost-effective inorganic fillers Highly porous inorganic fillers
AEROSIL® R 104 / R 106 (D4 treated)	Low volatiles	Safe usability on production lines

Additives for thermally conductive formulations

- · Anti-settling for micron sized spherical alumina and other thermally conductive fillers
- · Lower viscosity for boron nitride filler
- Improved thermal conductivity in addition to the role as rheology modifier and anti-settling agent
- · Reducing thickening, featuring with our low surface area fumed alumina e.g. VP Alu 45 / Alu 45 RK

Additives for silicones

- AEROXIDE® TiO₂ PF 2 is a unique fine particle mixed oxide consisting of titania and iron oxide, manufactured analogous to the AEROSIL® process
- Hydrophobized silica such as AEROSIL® R 104 / AEROSIL® R 106 offers a safe production environment due to low content of D4 volatiles

Elongation at break of silicone rubber at high temperature: adding 1.0 - 3.0 wt.-% of AEROXIDE® TiO_2 P 25 or 0.25 - 1.0 wt.-%of AEROXIDE® TiO₂ PF 2 is an effective solution to improve the thermal stability of silicones 450 300 150 15 10 20 Storage time at 275 $^{\circ}\text{C}$ / days 0 % AEROXIDE® — 2 % AEROXIDE® TiO₂ P 25 O.5 % AEROXIDE® TiO₂ PF 2

Oil Additives **Smart Effects**

SILICONE AND FILLER TREATMENT PORTFOLIO FOR

Battery Management System

BATTERY ASSEMBLY

Silicone portfolio

Product	Application	
Dalama VG : "Language of Grand Salama	Vinyl-terminated silicone portfolio with broad range viscosity starting from 20 mPas	
Polymer VS silicones and Crosslinkers	Full range with different SiH contents & viscosity	
Modifier 700 series	Di-functional SiH structure to archive low process viscosity and high elongation properties	
VQM 900 series	Vinyl-functional QM resin for high mechanical properties and transparent formulations	
ALBIFLEX* Si/EP Hybrid Polymer for very flexible, vibration absorbing, highly filled Epoxies		
Polymer ST and TEGOPAC®	Silane terminated polymers and Reactive Diluents	

Our full portfolio of silicone raw materials give high flexibility to build your formulation with desired viscosity, curing speed, hardness and high performance. Guiding formulations and technical exchange with our experts upon request.

Evonik solutions include: Raw materials and additives for

- Gap fillers
- Thermal interface materialsBattery assembly adhesives
- Sealants
- Potting and encapsulants

Filler treatment portfolio for better thermal conductivity and flame retardancy

Product	Application
TEGOPREN° 6875 & 6879	Organo-modified siloxane chemistry for hydrophobic treatment of functional filler. Can also be used as in-situ dispersion additive
TEGOMER°	Broad chemical portfolio for filler treatment and in-situ additive in matrix

TEGOPREN® and TEGOMER® products enhance the functionality of different fillers in silicone, urethane, epoxy, acrylic and thermoplastics. Filler treatment benefits include:

- Improved filler distribution in the matrix leading to higher thermal conductivity, better flame retardancy and lighter weight
- · Reduced formulation and processing viscosity and lower water uptake
- Further increase of functional filler dosing level which enables even higher performance

For other matrices, we also offer high performance raw materials including NANOPOX®, NANOCRYL®, ALBIFLEX®, ALBIDUR® for the flexibilisation and long-term performance of epoxy and acrylic.

Interface & Performance

LIB RECYCLING WITH HYDROGEN PEROXIDE AND PERSULFATE

Battery Recycling

ECO-FRIENDLY OXIDANTS

Lithium-ion batteries (LiBs) are widely used in electric vehicles and smart portable devices. As more and more of these items reach the end of their life cycles, it is becoming increasingly critical to recycle the LiBs in order to reuse the rare and precious metals contained within them, such as lithium and cobalt. Hydrogen peroxide and persulfate are uniquely positioned to aide in the recovery of these metals during the LiB recycling process.

Product	Application
HYPROX° 350, HYPROX° 500	Recovery of Li, Co, Ni, Mn in the leaching processes
CLAMARIN° 350, CLAMARIN° 500	Wastewater treatment to breakdown organics to reduce COD
Ammonium persulfate and sodium persulfate	Oxidative leaching of oxidizable metals such as lithium

Application overview

Hydrogen peroxide

Among the various LiB recycling technologies, one widely implemented process is called "wet hydrometallurgy". Here, hydrogen peroxide (H_2O_2) is used as a reduction agent in the leaching step to:

- Oxidize or reduce the metals such as Co, Mn, Ni, Li, and Fe to aide in their recovery from the LiB substrates;
- · Increase leaching efficiency and shorten leaching time;
- Because hydrogen peroxide decomposes into only water and oxygen, it leaves minimal trace on the environment.

Hydrogen peroxide is also an effective and sustainable solution for wastewater treatment: It can be used alone or in combination with advanced oxidation process (AOP) technologies to break down organic chains to reduce the chemical oxygen demand of wastewater.

Persulfate

Persulfate is another peroxygen produced by Evonik. While hydrogen peroxide can either oxidize or reduce respective metals, persulfate provides a primarily oxidative pathway under conditions typically employed in LiB recycling. For example, this pathway is used as a highly efficient method to recover lithium from lithium iron phosphate (LFP) batteries.

Persulfate is available in several salts that are used in LiB recycling, including ammonium persulfate and sodium persulfate. The persulfate process leaches lithium quickly and efficiently from the cathode powder.

Active Oxygens

Your contacts

Battery Pack

Crosslinkers

EMEA +49 2365 49 4031

sebastian.denardo@evonik.com

www.vestalite.com

Coating & Adhesive Resins

EMEA +49 2365 49 84855 sara.liebana-vinas@evonik.com

Smart Effects

EMEA thomas.schlosser@evonik.com

www.evonik.com/smarteffects

Comfort & Insulation **EMEA**

julien.couet@evonik.com

Coating Additives

EMEA +49 151 203-20243

markus.hallack@evonik.com

ASIA +86 21 6119-1000 tiantian.xie@evonik.com

ASIA +86 136 5181 3057

ASIA +86 21 6119-1348

+86 21 6119-1000

cindy.wang@evonik.com

ASIA + 86 21 6119-1130 Anny.zha@evonik.com

ASIA +86 188 1782-8602

+86 21 6119-1481 eric.li@evonik.com

simon.shao@evonik.com

hugo.wang@evonik.com

Americas +1-732-981-5363 ingo.stohrer@evonik.com

Americas +1-610-573-5292

pritesh.patel@evonik.com

Americas +1-732-981-5226 jay.patel@evonik.com

Americas +1-610-944-4089 jonathan.weaver@evonik.com

Americas +1-484-929-6732

francisco.cortesbaledon@evonik.com

Battery Cell

Interface & Performance

EMEA +49 201 173-3090

benjamin.brehmer@evonik.com

+49 201 173-3177 pierfrancesco.caponi@evonik.com

Smart Effects

EMEA +49 152 3310 1879

daniel.esken@evonik.com

www.evonik.com/smarteffects

High Performance Polymers

ASIA +86 189 1500 2302

Jundy.cai@evonik.com

Americas +1-804-727-0686 anthony.beauglehole@evonik.com

+86 21 6119-2836

ASIA +86 21 6119-1125

ASIA +86 21 6119-1481 Americas +1-732-981-5328

Battery Management System

High Performance Polymers

EMEA +49 2365 49 9613 duy-vu.pham@evonik.com

Oil Additives

EMEA +49 6151 18 4232 dominik.boehm@evonik.com

Smart Effects

thomas.schlosser@evonik.com wojciech.pisula@evonik.com

www.evonik.com/smarteffects

ASIA +86 21 6119-3819 wei.zeng@evonik.com

ASIA +86 186 1625-5010 stephen.zhang@evonik.com

ASIA +86 21 6119-1481 eric.li@evonik.com +86 188 1782-8602 simon.shao@evonik.com

Americas +1-947-465-3531 david.schmitz@evonik.com

Americas +1-267-431-9759 justin.mills@evonik.com

Americas +1-732-981-5328 victor.lifton@evonik.com

Interface & Performance

EMEA +49 201 173-2095 peter.seidensticker@evonik.com

ASIA +86 21 6119-3263 pei.wei@evonik.com

Americas +1-804-727-0639

jonathan.weaver@evonik.com

Comfort & Insulation

EMEA +49 201 173-2745 julien.couet@evonik.com ASIA +86 21 6119-3653 zheng.zhu@evonik.com Americas +1-610-944-4089

Battery Recycling

Active Oxygens

EMEA +49 618159-12439 jacobo.villagran@evonik.com **ASIA** +86 21 6119-2887 jun.kim@evonik.com

Americas +1-973 929-8373 shirley.hsu@evonik.com

Evonik Operations GmbH

Rellinghauser Straße 1–11 45128 Essen, Germany

Evonik Specialty Chemicals (Shanghai) Co., Ltd. 55 Chundong Road, Shanghai, China PHONE +86 21 6119-1000

Evonik Corporation
2 Turner Place
Piscataway, New Jersey 08854

www.evonik.com automotive.evonik.com

This knowledge and all further technical advise is based on our present knowledge and experience. However, it implies no liability or other legal responsibilities on our part, including with regard to existing third party intellectual property rights, especially patent rights. In particular, no warranty, whether express or implied, or guarantee of product properties in the legal sense is intended or implied. We reserve the right to make any changes according to technological progress or further developments.

The customer is not released from the obligation to conduct careful inspections and testing of incoming goods. Performance of the product described herein should be verified by testing, which should be carried out only by qualified experts in the sole responsibility of a customer. Reference to trade names used by other companies is neither a recommendation, nor does it imply that similar products could not be used.

AERODISP®, AEROSIL®,
AEROXIDE®, ALBIFLEX®,
ANCAMIDE®, ANCAMINE®,
DABCO®, DYNASYLAN®,
HYPROX®, KOSMOS®,
NOURYBOND®
POLYCAT®, TEGOMER®,
TEGOPREN®, TEGOSIL®,
TEGOSTAB®, TEGO® Surten E,
VESTALITE®, VESTAMID®,
VESTOPLAST®, VISCOBASE®,
P84® are registered trademarks of
Evonik Industries AG or its
subsidiaries.

