

AWA Silicone Technology Seminar 2014

March 19 - Amsterdam, the Netherlands

Platinum Sponsor:

Introduction

Dear Sir/Madam.

It was our pleasure welcoming you at the **AWA Silicone Technology Seminar 2014.** Your participation was highly appreciated and we hope that the event was beneficial for you and your organization.

Included, please find the proceedings of the event. We would like to thank our sponsors and speakers for their valuable contribution to the program and making this industry platform possible.

Platinum Sponsor: UPM

Gold Sponsors: Bluestar Silicones, Dow Corning Corporation, Evonik Industries AG, Mondi, Wacker Chemie AG

Silver Sponsors: BillerudKorsnäs, Boise Inc., Felix Schoeller Release, SAScoat Vietnam

Media Sponsors: Converting Quarterly, Etiq et Pack, Étiquettes Plus, Labels & Labeling, Label & Narrow Web,

NarrowWebTech, PFFC, RISI.

We welcome and thank you for your comments and suggestions for improvement as they contribute to further developing our event format. If you have not provided your comments yet, please complete the feedback form at the end of this document and submit it to us.

Thank you again for your participation in the seminar. We wish you all the best and look forward to welcoming you again at one of our future events.

Do not hesitate to contact us if you have any queries.

With kind regards,

AWA Conferences & Events

T+31 20 676 2069

F +31 20 820 8633

E conferences@awa-bv.com

W www.awa-bv.com

Index

SEMINAR PROGRAM – Wednesday March 19, 2014

(Please click the conference title to view the presentation)

Re-engineering Cost Efficient Release Base Paper Concept

Mikko Rissanen, Director, Business Development, Label Papers, UPM

Cost Efficient Release Coating in a Complex Liner Market

Dr. Hans Lautenschlager, Senior Technical Manager Release Coating, Wacker Chemie AG

Silicone Release Liners - Problem Solving In Paper Release Applications

Dr. Mark Johns, Technical Service Scientist - Release Coatings, Bluestar Silicones (UK) Ltd.

Inerted Technology for UV-Curable Release Liners

Peter Beier, Team Leader Sales, Dr. Hönle AG

New Capabilities in Optical In-line Quality and Process Control in the Production of Release Liners

Hans Oerley, Senior Manager Business Development Dr. Schenk GmbH Industriemesstechnik GmbH

Using Renewable Nanotechnology (and other Novel Approaches) to Improve Release Base Paper Performance

Robert Hamilton, President, Stirling Consulting, Inc.

Silicone Developments to Improve Release Profiles for High-Speed Release Applications

Dr. Stephen Cray, Technology Leader – Europe, Dow Corning Corporation

Quality of Release Coatings with 5 Roller Coaters

Hardi Döhler, Innovation Management Radiation Curing, Evonik Industries AG

Release Coating Silicone Technology - Use the Full Spectrum!

Jérôme Salvert, Technical Service Engineer - Release Coatings Market, Bluestar Silicones

Name: Hardi Döhler

Title: Innovation Management Radiation Curing

Company: Evonik Industries AG

Company Profile: EVONIK Industries AG

Annual turn over: € 13,4 billion

Headquarter(s): Essen, Germany

Key Operation(s): Evonik - the creative industrial group from Germany - is one

of the world's leading specialty chemicals companies.

Number of employees: 33.300 (2012)

Application markets: UV curable silicones for

filmic or paper release liner

as used in labels, linerless labels, tapes...

Quality of release coatings with 5 Roller Coaters

Quality of release coatingswith 5 Roller Coaters

Content

- Some words about TEGO® RC Silicones
- What is influencing the release force
- Silicone coverage
- Coater head setting of a 5 roller coater

When thermal silicones have to give up...

TEGO® RC Silicones will provide a solution for you!

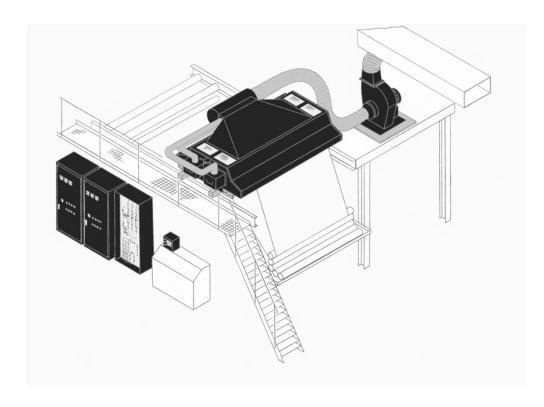
Use of heat-sensitive films PE, PP, PET, PVC

Absolute paper lay flat coated craft paper like CCK, PEK

Cost reduction

down gauging films and papers

Environmentally friendly production low energy consuming, no solvents



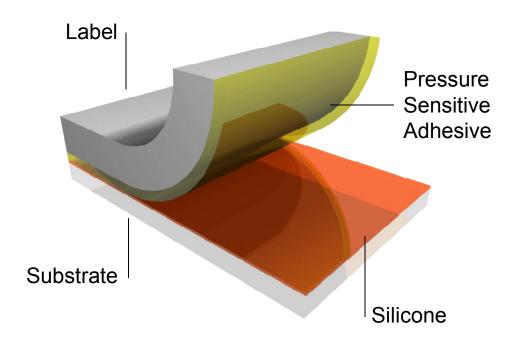
- Aluminium & Foils
- Foams
- Non-Woven & Textiles
- Office papers
- Printed Surfaces
- PVC
- Recycled Materials
- Renewable Films
- Thermal Papers
- Thinnest Films

Easy to Handle Machinery

Compact construction, easy retrofitting

Approx. 1.3 m in web direction, less floor space

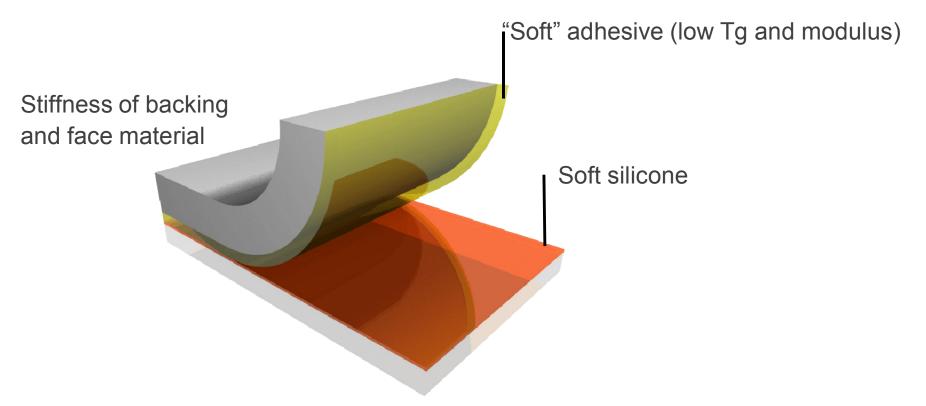
Low equipment investment


Extremely short start-up times (< 5 min.)

Less silicone waste, less rejects of substrate

Release – What is effecting the release

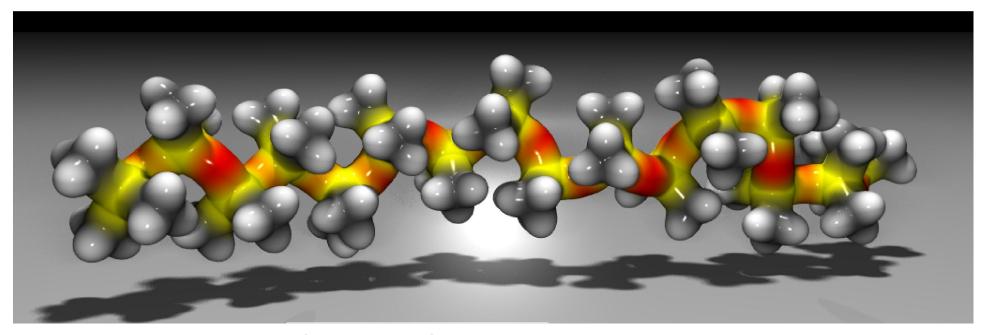
Release is always a combination of silicone adhesive separation and energy dissipation



Release – Energy Dissipation

Mechanical energy dissipation

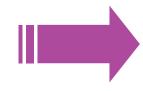
"Bulk mechanical response of the non-rigid components"



Release is influenced by the test set up and label construction, this is often disregarded as a contributor to release force

Release – Attractive Forces

Silicone release coatings have very low surface energy


Surface Energy [mN/m] BoPP 32

Carbon

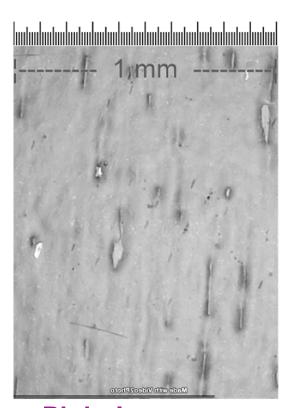
Silicone

18-22

LDPE 27

very low interfacial

adhesion

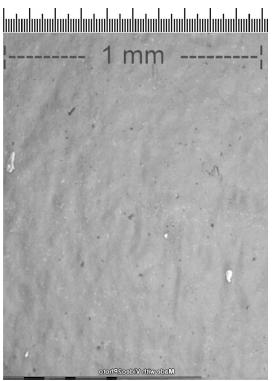

Silicone adhesive interactions (interface chemistry)

	Mechanical adhesion	Full contact: Adhesive flow into cavities
	Van der Waals forces	Wetting: Van der Waal force vary with distance
	Orientation, rotation effects	Identical surface tension segments face each other
Time to	Physical entenglement	Diffusion: PSA and Silicone chains can mingle
develop	Chemical reactions	If any: Time and temperature driven

Release – Attractive Forces

Silicone adhesive interactions (interface chemistry)

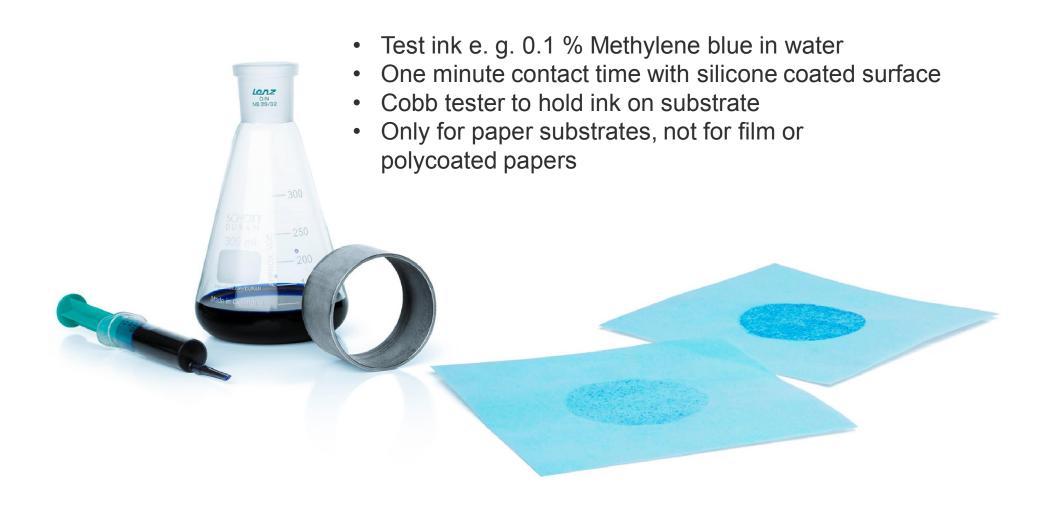
Pinholes expose substrate


Mechanical adhesion

Van der Waals forces

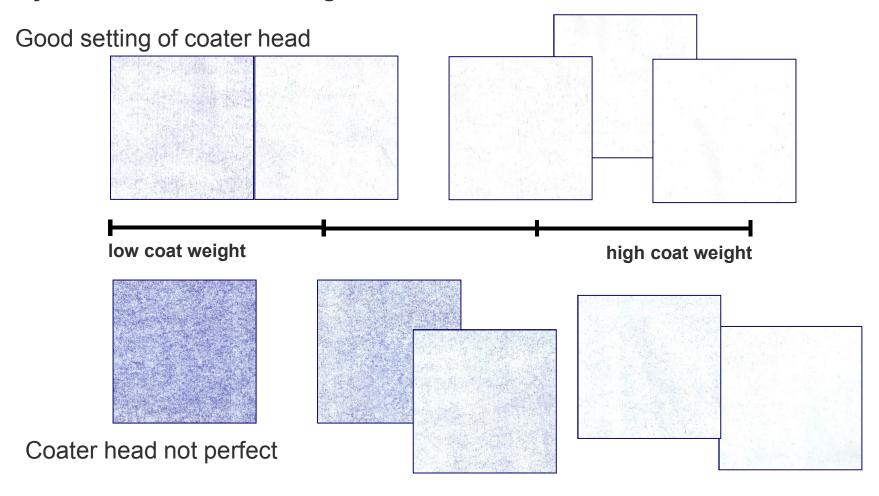
Orientation, rotation effects

Physical entenglement


Chemical reactions

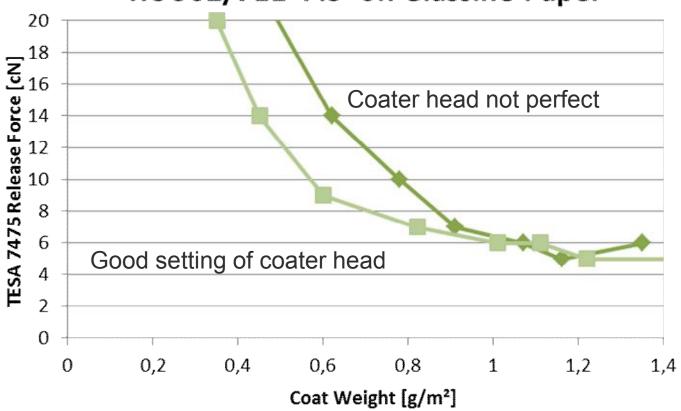
This is why silicone coverage is so important

Dye Stain Test for Silicone Coverage of Paper Substrates



Dye Stain Test for Silicone Coverage of Paper Substrates

Dye Stain Test vs Coat Weight



Dye Stain Test for Silicone Coverage of Paper Substrates

Release vs Coat Weight

Microscope for Silicone Coverage on Filmic Substrates

Type of Microscope

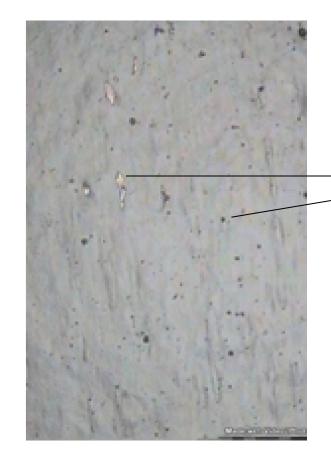
 Coaxial illumination (transmitted light)
 40-60 times magnification

Portable microscope

• Model 2054-40-CIL, ~ 1000 €

Further advantages with

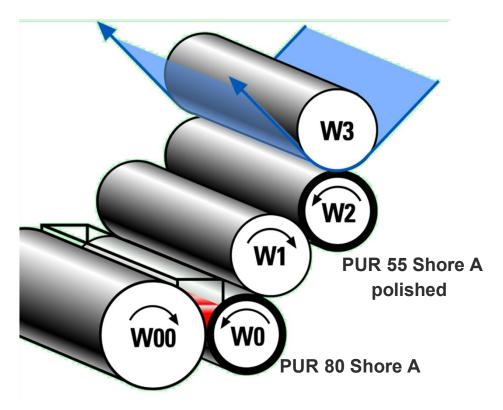
- Polarised light
- Stereo microscope
- Camera interface



High coat weight is no guarantee for good coverage!

1,75 g/m²

0,31 g/m²



Gel in BoPP Distance holders, chalk

950 x 1430 µm

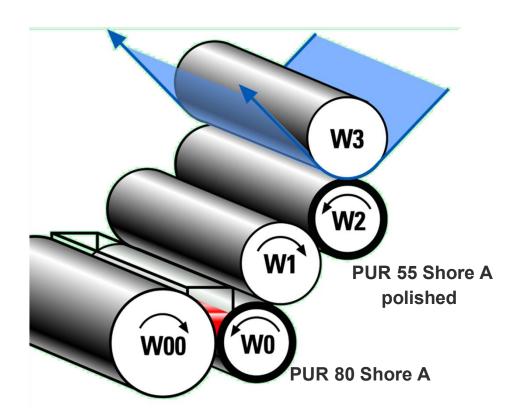
5 Roller Coater (naming as used by Polytype / CH)

W00, W1, W3 chrome plated steel

Coating quality depends on Roller W2 quality

- highly polished for best results
 Silicone viscosity
- optimum range 200-500 mPas
- silicone temperature up to 60°C

Heat control


friction results in heat

Silicone mixing in nip

to uniform air bubbles

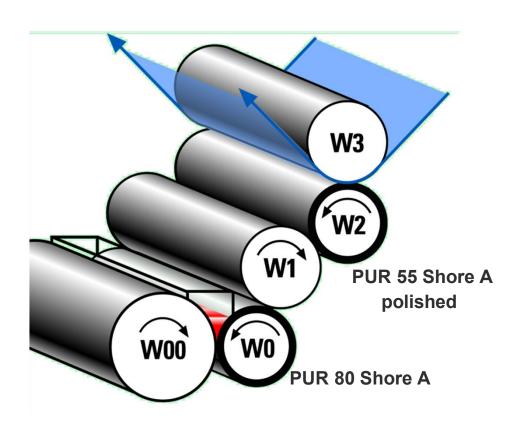
5 Roller Coater (naming as used by Polytype / CH)

W00, W1, W3 chrome plated steel

Plenty of things to play with

4 nips - 4 footprint [FP] 5 rollers - 5 speeds [v]

The following values are for guidance only and indicate trends.


Roller hardness and diameter will influence the actual settings.

5 Roller Coater (naming as used by Polytype / CH)

Coating trials with RC902/711 70:30 on 50µm BoPP

V-Nr.	Standard
Setting	(16)
Speed [m/min]	200,0
v W00 [m/min]	3,0
v W0 [%]	12,0
v W1 [%]	70,0
v W2 [%]	102,0
FP W00/W0 [mm]	15,5
FP W0/W1 [mm]	5,5
FP W1/W2 [mm]	4,5
FP W2/W3 [mm]	10,5

W00, W1, W3 chrome plated steel

V-Nr.	Standard
Setting	(16)
Speed [m/min]	200,0
v W00 [m/min]	3,0
v W0 [%]	12,0
v W1 [%]	70,0
v W2 [%]	102,0
FP W00/W0 [mm]	15,5
FP W0/W1 [mm]	5,5
FP W1/W2 [mm]	4,5
FP W2/W3 [mm]	10,5
Silicone Coat Weight [g	/m2]
W1 W2 W2 W00 W00	

100/04
16
200,0
3,0
12,0
70,0
102,0
15,5 5,5 4,5 10,5
1,03

V-Nr.	Standard	100/04	100/04	100/04	100/04	100/04	
Setting	(16)	17	16	18	19	20	
Speed [m/min]	200,0	200,0	200,0	200,0	200,0	200,0	
v W00 [m/min]	3,0	2,0	3,0	5,0	10,0	15,0	
v W0 [%]	12,0	12,0	12,0	12,0	12,0	12,0	
v W1 [%]	70,0	70,0	70,0	70,0	70,0	70,0	
v W2 [%]	102,0	102,0	102,0	102,0	little i	mpact on	coat weight
FP W00/W0 [mm]	15,5	15,5	15,5	15,5		pact on q	
FP W0/W1 [mm]	5,5	5,5	5,5	5,5	5,5	5,5	•
FP W1/W2 [mm]	4,5	4,5	4,5	4,5	4,5	4,5	
FP W2/W3 [mm]	10,5	10,5	10,5	10,5	10,5	10,5	
Silicone Coat Weight [g	g/m2]	0,96	1,03	1,09	1,24	1,28	
W3 W1 W00 W0						At at	
S	peed						S

V-Nr.	Standard	101/01	101/01	101/01	101/01	101/01	101/01
Setting	(16)	14	15	16	17	18	19
-							
Speed [m/min]	200,0	200,0	200,0	200,0	200,0	200,0	200,0
v W00 [m/min]	3,0	3,0	3,0	3,0	3,0	3,0	3,0
v W0 [%]	12,0	30,0	25,0	20,0	15,0	10,0	5,0
v W1 [%]	70,0	70,0	70,0	70,0	70,0	70,0	70,0
v W2 [%]	102,0	102,0	102,0	102,0	400.0	400.0	100.0
					high ir	npact on	coat weigh
FP W00/W0 [mm]	15,5	8,5	8,5	8,5	8,5	8,5	8,5
FP W0/W1 [mm]	5,5	5,5	5,5	5,5	5,5	5,5	5,5
FP W1/W2 [mm]	4,5	4,5	4,5	4,5	4,5	4,5	4,5
FP W2/W3 [mm]	10,5	10,5	10,5	10,5	10,5	10,5	10,5
Silicone Coat Weight [g	g/m2]	4,32	3,42	2,50	1,70	1,04	0,39
W1 W2 W0 W0							
VVK	spec	2d					

V-Nr.	Standard	100/04	100/04	100/04	100/04	100/04	100/04	100/04
Setting	(16)	31	32	33	34	35	36	37
Speed [m/min]	200,0	200,0	200,0	200,0	200,0	200,0	200,0	200,0
v W00 [m/min]	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
v W0 [%]	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
v W1 [%]	70,0	90,0	80,0	70,0	60,0	50,0	40,0	30,0
v W2 [%]	102,0	102,0	102,0	102,0	102.0	102.0	102.0	192,0
					little in	npact on	coat wei	ght
FP W00/W0 [mm]	15,5	15,5	15,5	15,5	little in	npact on	quality	5,5
FP W0/W1 [mm]	5,5	5,5	5,5	5,5	Tittle III	ilpact on	quanty	,5
FP W1/W2 [mm]	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5
FP W2/W3 [mm]	10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5
Silicone Coat Weight [g	/m2]	1,05	1,04	1,02	0,98	0,92	0,86	0,79
W3								
W W								
WOO WO		19.00				10	N. N.	
spe	ed						I .	1

V-Nr.	Standard	100/04	100/04	100/04	101/04	100/04	100/04
Setting	(16)	27	28	24	10	29	30
Speed [m/min]	200,0	200,0	200,0	200,0	200,0	200,0	200,0
v W00 [m/min]	3,0	3,0	3,0	3,0	3,0	3,0	3,0
v W0 [%]	12,0	14,0	14,0	15,0	13,0	14,0	14,0
v W1 [%]	70,0	70,0	70,0	70,0	70,0	70,0	70,0
v W2 [%]	102,0	110,0	105,0	102,0	102,0	95,0	90,0
FP W00/W0 [mm]	15,5	15,5	15,5	15,5	high in	npact on	quality
FP W0/W1 [mm]	5,5	5,5	5,5	5,5	differe	ntial spe	ed is impo
FP W1/W2 [mm]	4,5	4,5	4,5	4,5	4,5	4,5	4,5
FP W2/W3 [mm]	10,5	10,5	10,5	10,5	10,0	10,5	10,5
	31 31 3 3 3 3 3						
Silicone Coat Weight [g	g/m2]	1,22	1,20	1,35	1,08	1,23	1,23
W3 W1 W2				l'hou			
Woo Wo	speed	and the second	See and Section of Persons	Condition () Condition	and a looken	the state of the second	Carlotte Carlotte

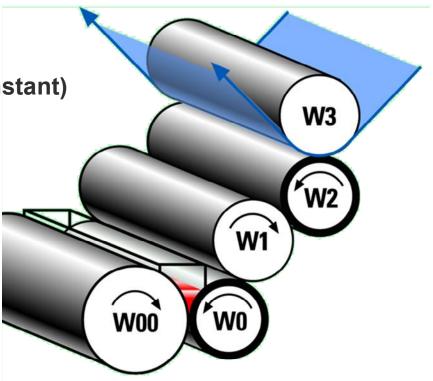
V-Nr.	Standard	101/04	101/04	101/04
Setting	(16)	20	21	22
Speed [m/min]	200,0	50,0	100,0	200,0
v W00 [m/min]	3,0	3,0	3,0	3,0
v W0 [%]	12,0	13,0	13,0	13,0
v W1 [%]	70,0	70,0	70,0	70,0
v W2 [%]	102,0	102,0	102,0	102,0
FP W00/W0 [mm]	15,5	15,0	15,0	15,0
FP W0/W1 [mm]	5,5	5,5	5,5	5,5
FP W1/W2 [mm]	4,5	4,5	4,5	4,5
FP W2/W3 [mm]	10,5	10,5	10,5	10,5
Silicone Coat Weight [g	/m21	0,58	0,90	1,13
W ₃	line speed			

high impact on coat weight high impact on quality

Line speed changes need adaption on v W0 for coat weight and v W2 and FP W2/W3 for coverage

V-Nr.	Standard	101/04	101/04	101/04	101/04	_
Setting	(16)	1	2	3	4	
Speed [m/min]	200,0	200,0	200,0	200,0	200,0	
v W00 [m/min]	3,0	3,0	3,0	3,0	impact o	on coat weight
v W0 [%]	12,0	10,0	10,0	10,0	_	as pronounced as v W
v W1 [%]	70,0	70,0	70,0	70,0	Dat Hot t	
v W2 [%]	102,0	102,0	102,0	102,0	102,0	
FP W00/W0 [mm]	15,5	5,0	10,0	15,0	20,0	
FP W0/W1 [mm]	5,5	5,5	5,5	5,5	5,5	
FP W1/W2 [mm]	4,5	4,5	4,5	4,5	4,5	
FP W2/W3 [mm]	10,5	10,5	10,5	10,5	10,5	
Silicone Coat Weight [g	j/m2]	1,30	0,99	0,78	0,66	
W3 W2 W00 W0						
fc	otprin	t				

V-Nr.	Standard	101/04	101/04	101/04	101/04
Setting	(16)	5	6	7	8
Speed [m/min]	200,0	200,0	200,0	200,0	200,0
- 14/00 [/i-1	0.0	0.0	2.0	2.0	
/ W00 [m/min]	3,0	3,0	3,0	3,0	little in
/ W0 [%]	12,0	15,0	15,0	15,0	little in
v W1 [%]	70,0	70,0	70,0	70,0	1
v W2 [%]	102,0	102,0	102,0	102,0	
ED \\\\00\\\\\0 [mm]	15.5	15,0	15,0	15,0	same v
FP W00/W0 [mm] FP W0/W1 [mm]	15,5 5,5	3,0	6,0	9,0	12,0
FP W1/W2 [mm]	4,5	4,5	4,5	4,5	4,5
FP W2/W3 [mm]	10,5	10,5	10,5	10,5	10,5
	,-	, , , , , ,	,	, , ,	
Silicone Coat Weight [g	/m2]	1,27	1,30	1,30	1,32
W3 W2 W2 W0 W0					
foo	otprint	 - -			



V-Nr.	Standard	101/04	101/04	101/04	101/04	101/04
Setting	(16)	9	10	11	12	13
Speed [m/min]	200,0	200,0	200,0	200,0	200,0	200,0
v W00 [m/min]	3,0	3,0	3,0	3,0	high im	nact on quali
v W0 [%]	12,0	13,0	13,0	13,0	nigh im	pact on quali
v W1 [%]	70,0	70,0	70,0	70,0	70,0	70,0
v W2 [%]	102,0	102,0	102,0	102,0	102,0	102,0
FP W00/W0 [mm]	15,5	15,0	15,0	15,0	15,0	15,0
FP W0/W1 [mm]	5,5	5,5	5,5	5,5	5,5	5,5
FP W1/W2 [mm]	4,5	4,5	4,5	4,5	4,5	4,5
FP W2/W3 [mm]	10,5	5,0	10,0	15,0	20,0	25,0
Silicone Coat Weight [g	ı/m2]	1,08	1,08	1,11	1,14	1,13
W3 W2 W2 W0 W0	foot print					0

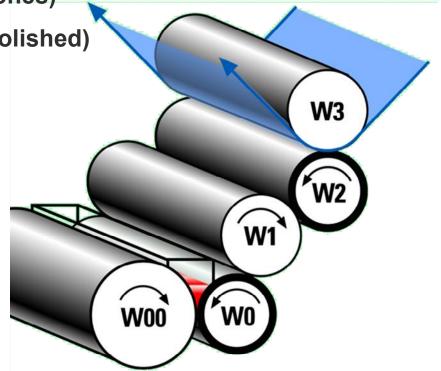
Most important controls with 5 Roller Coater to control coat weight:

- Keep silicone viscosity constant
- Keep roller temperature constant
- Foot print of W00-W0 (best to keep constant)
- Speed roller W0 (best to change)

Most important controls with 5 Roller Coater for good coverage:

Viscosity of silicone (heat up RC Silicones)

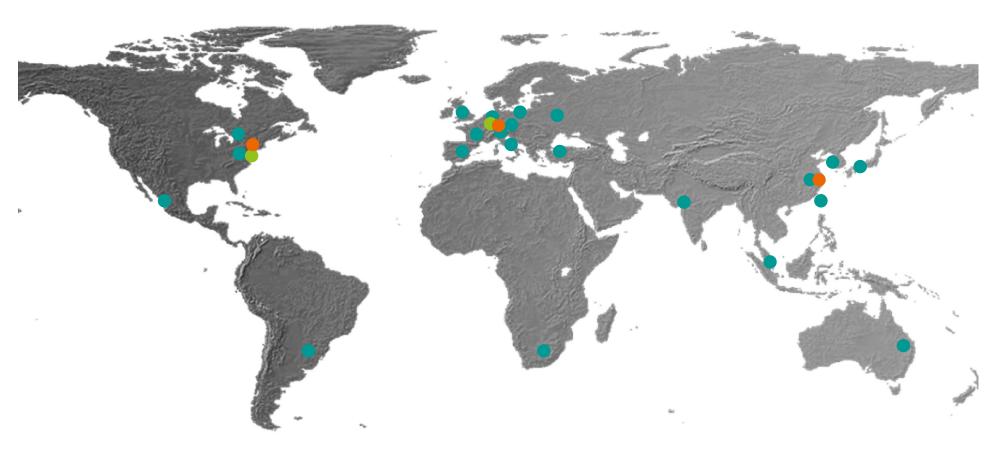
Smoothness of the applicator roller (polished)


 Ratio of foot print applicator to web and differential speed

smooth film: high differential

with low FP

papers: high FP


with low differential

Please note: Some coaters may have problems with the engine torque for sufficient footprint/ differential speed setting.

TEGO® RC Silicones – Pilot Lines

Headquarters in Essen / Germany

Global sales (•) and distribution network

Production facilities for RC Silicones ()

RC Technical Service Centres (•)

TEGO® RC Silicones – Pilot Lines

RC Technicum Essen / Germany

- Silicone coating / UV drying
- Adhesive inline coating dispersion acrylics hotmelts & UV hotmelts
- Inline / offline process
- Max. 500 mm working width roll width 520 mm outer Ø 600 mm
- Max. 100 m/min. line speed
- Production of release liners tapes
 label laminates

For more information please visit our website

www.evonik.com/tego-rc

On our web site you'll find a video about footprint measurement:

http://www.tego-rc.com/product/tego_rc/en/products-services/technical-services/test-facilities/pages/default.aspx

Author Hardi Döhler

Evonik Industries AG Goldschmidtstraße 100 45127 Essen/ Germany

February 2014

