Protectosil® for fiber cement boards

Basic introduction

- Description
- Basic product recommendation
- Application-/ Testmethods
- Performance data

Protectosil® products can render your fiber cement boards resistant against water making them long lasting and optically unchanged.

Protectosil® for fiber cement boards...

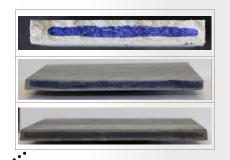
Problem

Fiber cement boards are very susceptible to damages caused by water and UV light (e.g. efflorescence, discoloration, delamination).

Offering

Fiber cement boards become more resistant, durable and stay optically unchanged.

Protectosil® brand offers several tailor made solutions for the fiber cement board industry.



Our Performance!

Reduction of water uptake

Protectosil® product are able to reduce the water uptake of fiber cement boards up to 90 %

Penetration depth

Protectosil® offers a penetration depth from >1 mm to full penetration, depending on board type, product choice and consumption rate

Key benefits of Protectosil®

Efflorescence control

Protectosil® effectively protects fiber cement boards from efflorescence

Prevention of discoloration

Treated

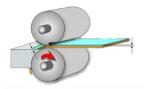
Protectosil® prevents discoloration of fiber cement boards over time

Untreated

- Description
- Basic product recommendation
- Application-/ Testmethods
- Performance data

Product recommendation

Fiber cement boards


	Protectosil®	Effect			Processability	
	grade	Reduction of water uptake	Prevention of discoloration	Beading effect	Solvent for dilution	Recommended dilution rate
pure silane systems	008	✓			organic solvent	pure – 1:9
	009	✓		✓	organic solvent	pure – 1:9
	100 NK	✓		✓	organic solvent	pure – 1:9
water based	WS 340	✓			water	1:1 – 1:3
	WS 410	✓			water	1:1,5 – 1:4
	WS 602	✓			water	1:1 – 1:4
	WS 610	✓		✓	water	1:1,5 – 1:4
	WS 670	✓			water	1:1,5 – 1:4
	SC CONCENTRATE		✓	✓	water	pure – 1:10

- Description
- Basic product recommendation
- Application-/ Testmethods
- Performance data

Application methods for Protectosil® and possible tests

Application methods

Means of immersion/roller application

- Suitable for emulsions (water based products)
- Amount can be optimized by immersion time and concentration

Available testing methods

- Reduction of water uptake by means of immersion
- Reduction of water uptake with RILEM tube
- Surface properties & Abrasion test
- QUV accelerated weathering
- Penetration depth (every side)
- Outside weathering test (prevention of algea growth)

Performance testing

Spraying

- Suitable for every product
- Amount can be optimized by times of spraying, number of application steps as well as concentration

Available testing methods

- Reduction of water uptake with RILEM tube
- Surface properties & Abrasion test
- QUV accelerated weathering
- Penetration depth (front side)
- Outside weathering test (prevention of algea growth)

Applied test methods

Our service


Reduction of water uptake - I

A modified DIN EN 13580 is used to evaluate the performance of the water repellent treatment. The water uptake is measured by total submersion of a hydrophobized sample and the reduction of water uptake is calculated in comparison to the untreated reference sample.


Samples are covered with about 2.5 cm of water. After 24 h of submersion, water adhering to the surface of each sample is gently wiped away with a paper cloth and the samples weighed to the nearest 0.1 g.

Reduction of water uptake - II

The RILEM Test Method II.4 is used to evaluate the performance of the water repellent treatment. For this purpose a measuring tube is affixed by interposing a tape of putty between the flat, circular brim of the pipe and the surface of the material to be tested. Water is then added through the upper, open end of the pipe until the column reached the "0" gradation mark. The quantity of water absorbed by the material after 0.5 h, 2.0 h, 6.0 h and 24.0 h is read directly from the graduated tube in regular intervals.

Penetration depth

Treated test samples are split with a hammer and chisel. A water based ink is then applied onto the fracture surface to visualize the penetration depth. The inner part of the roofing tiles where the concentration of the water repellent is not high enough to repel the water will become colored, while the outer part near the substrate's surface will not absorb the colored water.

The penetration depth is measured with a vernier caliper from the surface of the sample to the colored area at two different points on each of the 4 sides. The average penetration depth is then calculated from the 8 values obtained.

Applied test methods

Our service

QUV accelerated weathering

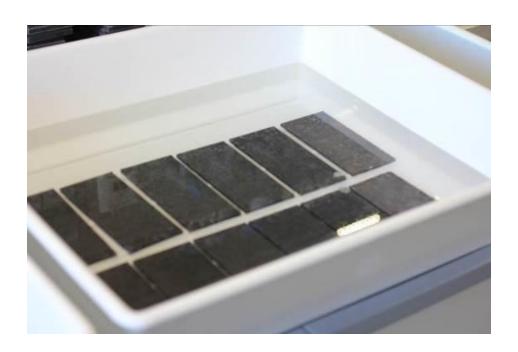
In order to determine the durability of the Protectosil® products treatment, the protected roof tiles are placed into a QUV accelerated weathering machine. Subsequently the samples are subjected to cyclic UV-irradiation and water spray according to EN ISO 11507. After certain time periods the samples are taken out of the QUV machine and the reduction of water uptake, beading effect and flow property is determined.

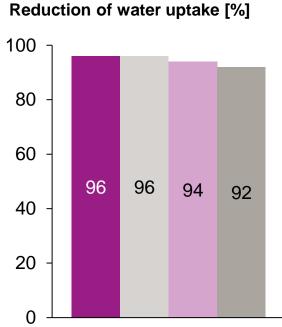
300 h of QUV accelerated weathering correspond to about one year of outside weathering in climatic conditions found in Southwest Germany.

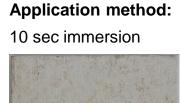
Flow property and beading effect

Beading effect						
Hours of QUV weathering						
0 h	300 h	900 h	1500 h	2100 h		
1		0				
		0	0			
			0			

The flow property of a water droplet on the treated surfaces, as well as the degree of wetting after 10 min is evaluated visually according to defined criteria.



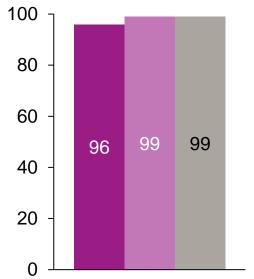

- Description
- Basic product recommendation
- Application-/ Testmethods
- Performance data



Determination of reduction of water uptake

Reduction of water uptake - I

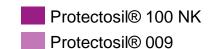




Determination of reduction of water uptake

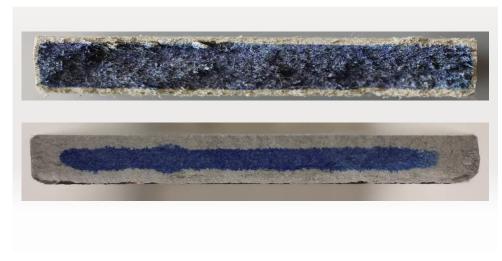
Reduction of water uptake - II

Reduction of water uptake [%]

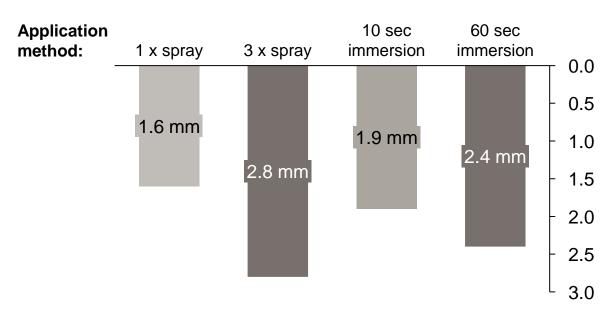


Application method:

1 x spray


Applied products:

Protectosil® WS 410 (1:4)



Determination of penetration depth

Applied product: Protectosil® 008

Penetration depth [mm]

Determination of surface properties

14 days after treatment and curing at room temperature, the flow property of a water droplet on the treated surfaces, as well as the degree of wetting after 10 min was evaluated visually according to the criteria described below.

Beading effect

Evaluation of the beading effect

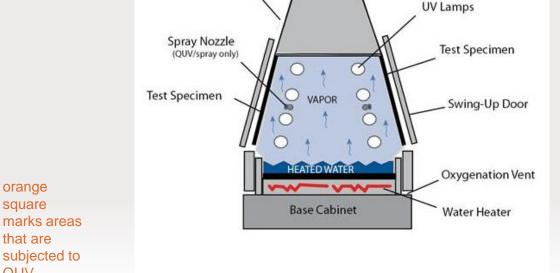
Rating	Description				
0	perfect beading				
1	droplets not absorbed	\rightarrow	no wetting		
2	droplets not absorbed	>	contact area is partially wetted		
3	droplets not absorbed	\rightarrow	contact area is fully wetted		
4	droplets slightly absorbed	→	darkening of contact contact area is fully wetted		
5	droplets partially absorbed (50%)	>	darkening of contact area		
6	droplets totally absorbed	→	darkening of contact area, Time range given "after 1-10 min"		

Flow property

Evaluation of the flow property

Description				
perfect beading				
droplets may drain freely		no traces left		
droplets may drain	\rightarrow	weak traces left		
droplets may drain	\rightarrow	strong traces left		
droplets partially absorbed		drainage still possible, strong traces left		
droplets totally absorbed		no drainage possible		
	perfect beading droplets may drain freely droplets may drain droplets may drain droplets partially absorbed	perfect beading droplets may drain freely droplets may drain → droplets may drain → droplets may drain →		

Determination of durability of Protectosil® treatment


Method: QUV accelerated weathering

In order to determine the durability of the Protectosil® products treatment, the protected fiber cement boards were placed into a QUV accelerated weathering machine. The samples were then subjected to cyclic UV irradiation and water spray according to EN ISO 11507.

300 h of QUV accelerated weathering correspond to about one year of outside weathering in climatic conditions found in Southwest Germany.

Surface appearance Hours of QUV weathering 0 h 300 h 900 h 1500 h 2100 h

Room Air Cooling

Talk to our experts to receive your individualized product recommendation

We are happy to support you

